

Tunable Photoemission and Photocatalytic Activity of Au-ZnO Nanostructures

Suzanna Akil

LCP-A2MC, Université de Lorraine, 1 Bd Arago, 57070, Metz, France

Photocatalysis is powerful, sustainable and cheap technology for energy production and environment remediation

Energy production, storage and conversion

Si-doped Li batteries

Pollutant degradation

- Pham, H. D. et al. (2021). Materials Letters, 288, 129355.

Limitations for photocatalysts!

A process using a material called photocatalyst that absorbs light energy to promote chemical reactions

Photocatalytist = Semiconductor

Water splitting mechanism

Kumar, A., et al. (2022). Small, 18(1), 2101638.

Saravanan, R. et al. (2017). Nanocomposites for visible light-induced photocatalysis, 19-40.

What's challenging in photocatalysis

Requirements for a photocatalyst:

- Chemical reactivity: robust material with high surface energy and coordination sites
- **Selectivity:** For example selective oxidation of NO to NO₂ and not to another product
- Stability: resistance to temperature, surrounding impurities, etc.
- Activity: if all previous features are insured, the catalyst is able to promote a reaction
- Long life span: number of reaction cycles

Non-homogenous and Defect-rich photocatalyst

Metal-semiconductor heterojunction

- harness a broader range of the solar spectrum, allowing for more efficient use of sunlight.
- offer greater control over reaction selectivity
- can operate under **milder conditions**, reducing energy consumption and costs.

Plasmonic photocatalysis: mechanistic issues

The plasmonic energy transformations of hot electrons in photocatalysis

Light scattering

Local EF enhancement induced-hot electron injections

Local heat generation

The dynamics in surface plasmons is still incomplete with information lacking on the detailed mechanism

Limitations for nanostructures prepared in liquid medium

Characterization of solutions doesn't allow good understanding of heterojunction mechanisms : need for synthesis optimization

Shape-controlled synthesis of gold nanoparticles

Dispersion composition: PMMA solvent (acetone),

Experimental approach

PMMA non-solvent (ethanol)- gold precursor (NaAuCl₄)

Spin-coating induced the formation of Au³⁺-loaded PMMA micelles

Vapor induced phase separation allows a spontaneous formation of monodisperse gold nanoparticles

Engineering plasmonic nanomaterials for photocatalysis

Shape control Gold nanoparticles

-Fahes et al. (2023). SoftMatter, 19, 321.

-Akil, S., Omar, R., Kuznetsov, D., Shur, V., En Naciri, A., & Jradi, S. (2021). Nanomaterials, 11(7), 1806.

Anisotropic shape-controlled Ag/Au bimetallic nanostructures

⁻Fahes et al. (2021). Nanomaterials, 11(8), 2055.

Engineering Au-ZnO nanostructures by a Surface-based synthesis strategy

- -Fahes A. et al. (2023). SoftMatter, 19, 321.
- -Fahes A. et al. (2022). Sensors and biosensors Reasearch, 38, 100528.
- -Akil S. et al. (2021). Nanomaterials, 11(7), 1806.
- -Fahes A. et al. (2021). Nanomaterials, 11(8), 2055.

From quenched to enhanced photolumincence

- ➤ Au-ZnO junction
 - → Formation of Schottky barrier

- ➤ PL enhancement → e⁻ transfer into ZnO
- > CTAB capping of AuNPs
 - → Creating distance between ZnO and AuNPs
 - →Schottky barrier effect is reduced by the separation distance

What's the optimal heterojunction distance for photocatalysis

Effect of distance determined by capping agent concentration

Effect of AuNPs size

➤ PL enhancement under UV irradiation → Indirect charge transfer from AuNPs into ZnO NPs

Mechanism of PL enhancement

- Visible defect luminescence is absorbed by AuNPs (due to spectral overlap)
- Hot electrons in AuNPs are produced and transferred into ZnO
- → Indirect charge transfer induced by energy transfer
- As AuNPs size ↑
 - Au-ZnO interfacial interaction ↓
 - AuNPs Abs ↓ , hot e⁻ ↓
 - → Less PL enhancement

Photocatalytic activity: Methylene blue degradation

Low quantities of small AuNPs:

Enhance the PL and PC

activities

Conclusions

The charge transfer (CT) based PL and PC is

- Defect mediated mechanism
- Plasmon structural features dependent
- Junction distance dependent

Enhancement: Optimum distances created by the gold's capping agent facilitated the indirect CT (AuNPs to ZnO) to enhance the PL by PIRET effect.

Acknowledgements

PhD and postdoc

Abeer Fahes

Mohammad Navvabpour

Ali Issa

Rana Omar

Issraa Shahine

Collaborators

Aotmane En-Naciri Jean-Jacques Gaumet Safi Jradi Pierre-Michel Adam Bendeif El-Eulmi Hervé Rinnert Vladimir Shur